A Hybrid Method for Systems of Closely Spaced Dielectric Spheres and Ions
نویسندگان
چکیده
We develop an efficient, semianalytical, spectrally accurate, and well-conditioned hybrid method for the study of electrostatic fields in composites consisting of an arbitrary distribution of dielectric spheres and ions that are loosely or densely (close to touching) packed. We first derive a closed-form formula for the image potential of a general multipole source of arbitrary order outside a dielectric sphere. Based on this formula, a hybrid method is then constructed to solve the boundary value problem by combining these analytical methods of image charges and image multipoles with the spectrally accurate mesh-free method of moments. The resulting linear system is well conditioned and requires many fewer unknowns on material interfaces as compared with standard boundary integral equation methods, in which the formulation becomes increasingly ill-conditioned and the number of unknowns also increases sharply as the spheres approach each other or ions approach the spheres due to the geometric and physical stiffness. We further apply the fast multipole method to accelerate the calculation of charge–charge, charge–multipole, and multipole–multipole interactions to achieve optimal computational complexity. The accuracy and efficiency of the scheme are demonstrated via several numerical examples.
منابع مشابه
Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity
Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...
متن کاملElectrical and Mechanical Performance of Hybrid and Non-hybrid Composites
This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for...
متن کاملInvestigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono
The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...
متن کاملDevelopment and Validation of an Ion Chromatography Method for Quantification of Ammonium Ions in STEALTH® Liposomes
Ammonium sulfate is one of the subsidiary components in the stealth liposome structure. The ratio of ammonium ion bound to liposome sphere to ammonium ions outside the liposome plays an important role in drug delivery formulation; accordingly, in order to quantify the ammonium ion in the liposome structure, a rapid and sensitive method was validated using a conductivity detector. Through this m...
متن کاملA Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced Conducting Cylinders
A long-standing area of materials science research has been the study of electrostatic, magnetic, and elastic fields in composites with densely packed inclusions whose material properties differ markedly from that of the background. While powerful tools exist for dilute suspensions, accurate calculations in the close-to-touching case have been carried out largely by asymptotic methods and only ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016